Functional Programming
Reduction Strategies.

In this lab, we will experiment with evaluation strategies used in lambda calculus.

Exercitiul 0.1. Recall the functions reducel and reducel’:

data Term = Var Id
| App Term Term
| Lambda Id Term deriving (Show, Eq)
reducel’ :: Term -> [Id] -> Maybe Term
reducel’ (Var id’) _ = Nothing
reducel’ (App (Lambda id term) term’) avoid =
Just (casubst id term’ term avoid)
reducel’ (App terml term2) avoid = case reducel’ terml avoid of
Nothing -> case reducel’ term2 avoid of
Nothing -> Nothing
Just term2’ -> Just (App terml term2’)
Just terml’ -> Just (App terml’ term2)
reducel’ (Lambda id term) avoid = case reducel’ term avoid of
Nothing -> Nothing
Just term’ -> Just (Lambda id term’)

reducel :: Term -> Maybe Term
reducel t = reducel’ t (vars t)

Questions: What is the evaluation strategy implemented above? Test the strategy
on the following examples:

1.(Az1.27) ((Aa@.xg) (Az.(A\z3.73) z));
2.(Ax1. \x0.22) ((Aaxaﬁ (Ay.y)).

Exercitiul 0.2. Starting from the implementation of the strategy from Exercise 0.1,
implement the call-by-name (CBN) strategy. Recall that for this strategy, reductions
inside a lambda-abstraction are not allowed. Test the implementation of the strategy on
the examples from Exercise 0.1. Can you identify an advantage of the CBN strategy?

Test the strategy on the following example as well:

(Az1.21 271) (()\xaz) (/\y.y)).

How many calculation steps are there associated with this strategy?
Exercitiul 0.3. What is the evaluation strategy implemented by the functions below?

strategyl’ :: Term -> [Id] -> [Term]
strategyl’ (Var _) _ = []

strategyl’ (App (Lambda id term) term’) avoid = [casubst id term’ term avoid] ++
let all = strategyl’ term avoid in

let all’ = strategyl’ term’ avoid in
[App (Lambda id successorTerm) term’ | successorTerm <- all] ++
[App (Lambda id term) successorTerm’ | successorTerm’ <- all’]

strategyl’ (App terml term2) avoid =

let alll = strategyl’ terml avoid in

let all2 = strategyl’ term2 avoid in

[App sterml term2 | sterml <- alll] ++

[App terml sterm2 | sterm2 <- all2]
strategyl’ (Lambda id term) avoid =

let all = strategyl’ term avoid in

[Lambda id sterm | sterm <- all]

strategyl :: Term -> [Term]
strategyl term = strategyl’ term (vars term)

strategy :: Term -> [Term]

strategy term = let all = strategyl term in case all of
[1 -> [term]
_ —> concat (map strategy all)

Test this strategy against the examples from previous exercises.

Exercitiul 0.4. Implement the call-by-value (CBV) strategy and test the implementa-
tion on the examples from the previous exercises.

Exercitiul 0.5. Compare the calculations associated with the CBV and CBN strategies
when they are run over the examples:

1.(Az1.Ax2.29) ((/\xx) ()\y.y));
2.(Ax1.21 x1) ((/\:Ux) ()\y.y)).

Exercitiul 0.6. Implement the Applicative Order strategy.

