
Functional Programming

Reduction Strategies.

In this lab, we will experiment with evaluation strategies used in lambda calculus.

Exercit, iul 0.1. Recall the functions reduce1 and reduce1’:

data Term = Var Id

| App Term Term

| Lambda Id Term deriving (Show, Eq)

reduce1’ :: Term -> [Id] -> Maybe Term

reduce1’ (Var id’) _ = Nothing

reduce1’ (App (Lambda id term) term’) avoid =

Just (casubst id term’ term avoid)

reduce1’ (App term1 term2) avoid = case reduce1’ term1 avoid of

Nothing -> case reduce1’ term2 avoid of

Nothing -> Nothing

Just term2’ -> Just (App term1 term2’)

Just term1’ -> Just (App term1’ term2)

reduce1’ (Lambda id term) avoid = case reduce1’ term avoid of

Nothing -> Nothing

Just term’ -> Just (Lambda id term’)

reduce1 :: Term -> Maybe Term

reduce1 t = reduce1’ t (vars t)

Questions: What is the evaluation strategy implemented above? Test the strategy
on the following examples:

1.(λx1.x1)
(
(λx2.x2) (λz.(λx3.x3) z)

)
;

2.(λx1.λx2.x2)
(
(λx.x) (λy.y)

)
.

Exercit, iul 0.2. Starting from the implementation of the strategy from Exercise 0.1,
implement the call-by-name (CBN) strategy. Recall that for this strategy, reductions
inside a lambda-abstraction are not allowed. Test the implementation of the strategy on
the examples from Exercise 0.1. Can you identify an advantage of the CBN strategy?

1

Test the strategy on the following example as well:

(λx1.x1 x1)
(
(λx.x) (λy.y)

)
.

How many calculation steps are there associated with this strategy?

Exercit, iul 0.3. What is the evaluation strategy implemented by the functions below?

strategy1’ :: Term -> [Id] -> [Term]

strategy1’ (Var _) _ = []

strategy1’ (App (Lambda id term) term’) avoid = [casubst id term’ term avoid] ++

let all = strategy1’ term avoid in

let all’ = strategy1’ term’ avoid in

[App (Lambda id successorTerm) term’ | successorTerm <- all] ++

[App (Lambda id term) successorTerm’ | successorTerm’ <- all’]

strategy1’ (App term1 term2) avoid =

let all1 = strategy1’ term1 avoid in

let all2 = strategy1’ term2 avoid in

[App sterm1 term2 | sterm1 <- all1] ++

[App term1 sterm2 | sterm2 <- all2]

strategy1’ (Lambda id term) avoid =

let all = strategy1’ term avoid in

[Lambda id sterm | sterm <- all]

strategy1 :: Term -> [Term]

strategy1 term = strategy1’ term (vars term)

strategy :: Term -> [Term]

strategy term = let all = strategy1 term in case all of

[] -> [term]

_ -> concat (map strategy all)

Test this strategy against the examples from previous exercises.

Exercit, iul 0.4. Implement the call-by-value (CBV) strategy and test the implementa-
tion on the examples from the previous exercises.

Exercit, iul 0.5. Compare the calculations associated with the CBV and CBN strategies
when they are run over the examples:

1.(λx1.λx2.x2)
(
(λx.x) (λy.y)

)
;

2.(λx1.x1 x1)
(
(λx.x) (λy.y)

)
.

Exercit, iul 0.6. Implement the Applicative Order strategy.

2

