Higher-order functions
Lab 5

1 Currying

We will explain the term currying with an example. Consider the functions f and g defined as
follows:

f :: (Int, Int) -> Int
f (x,y) =x+y

g :: Int -> Int -> Int
gxy=x+ty

Notice that the functions f and g have similar behaviors, yet they are different.
In Haskell, all functions have only one argument. The function f takes a single argument
(a tuple) and returns an element of type Int:

*Main> :t (f (2,3))
(f (2,3)) :: 1Int

In Haskell, when specifying the type of a function we must keep in mind that the symbol
-> is right associative. Thus, by g :: Int -> Int -> Int we actually mean g :: Int ->
(Int -> Int). So the function g also receives a single argument (an integer) and returns a
function of type Int -> Int

*Main> :t (g 2)
(g 2) :: Int -> Int

Further, this new function takes an integer as an argument and returns an integer as well:
*Main> :t ((g 2) 3)
((g 2) 3) :: Int

The function g is the curried form of the function f. This form is preferred in Haskell
because it allows partial application of functions. In Haskell all functions are considered to be
of the form curried.

Exercitiul 1.1. Write the curried variant for the function:

addThree :: (Int, Int, Int) -> Int
addThree (x,y,z) = x +y + z



Functional Programming 2024-2025 Lab V

2 Higher Order Functions

We saw in the previous section that functions in Haskell can return other functions. Further-
more, functions can take other functions as arguments. The function process below takes as
arguments a function of type Int -> Int and an integer. It applies the function given as an
argument over the integer and returns another integer:

process :: (Int -> Int) -> Int -> Int
process f x = f x

A possible function call is:

*Main> process (+ 2) 4
6

Another possibility to define the function process is as follows:

process :: (a ->a) > a -> a
process f x = f x

Here, a is a type variable that can be instantiated with any type:

*Main> process (+ 2) 4

6
Main> process (&& True) False
False

The function is first called on arguments of types Int -> Int and Int. On the second call,
the arguments are of types Bool -> Bool and Bool.

Exercitiul 2.1. Write a function that is of type (Int -> Int) -> Int -> Int -> Int and
applies the function of type Int -> Int to all values between two integers given as arguments.
The function will return the sum of the obtained values.

Exercitiul 2.2. Write a function that returns the composition of two functions.

Exercitiul 2.3. Write a function that receives as a parameter a list of functions and returns
their composition.

Exercitiul 2.4. Write a function that calculates the sum of the elements in a list. Use the
predefined list data type in the standard library.

Exercitiul 2.5. Write a function that applies a function to each element of a list and returns
the resulting list.

Exercitiul 2.6. Write a function that will return the list of elements for which a function of
type a -> Bool returns True.

Exercitiul 2.7. Write a function that implements the fold behavior (foldr, foldl) on the
list defined in the previous lab.

Preliminary Version 2



Functional Programming 2024-2025 Lab V

Exercitiul 2.8. Write three functions, which receive as input parameters the root of a binary
search tree and a function (f), which will be applied to each node in the manner preorder,
postorder, inorder. The functions will return a list of the results of applying the function
f. Use the binary search tree structure defined in the previous lab.

Exercitiul 2.9. Building on the previous exercise, write a single traversal function for a binary
search tree that receives the traversal strategy (inorder, postorder, preorder, any-order) as a
function.

3 Sort by comparison
Exercitiul 3.1. Implement a comparison-based sorting algorithm that receives as arguments:

1. alist :: [a] of elements to sort;

2. a:: a ->a -> Bool function to compare two elements.

You can choose which sorting algorithm you want. Don’t focus on efficiency. Choose the
meaning of the comparison function in a reasonable way.

Exercitiul 3.2. Implement http://hackage.haskell.org/package/base-4.12.0.0/docs/
Data-Either.html.

Exercitiul 3.3. Implement the binary search tree discussed in the lab previously so that it
can contain any type of data (which does part of the class Ord).

Exercitiul 3.4. Write a function that solves the search problem (sequential, binary), classically
and using foldr/foldl.

4 Bonus: TABA

TABA (there and back again) is a programming paradigm that allows writing functions in a
more efficient way than in the usual mode, by avoiding the construction of additional data
structures.

Exercitiul 4.1. Write a function fromend that receives a list L and a natural number n that
calculates the n-th element of the list L, counting from the end towards the beginning.
> fromend [1, 7, 5] O

Just 5

> fromend [1, 7, 5] 1
Just 7

> fromend [1, 7, 5] 100
Nothing

Exercitiul 4.2. Write a function convolute that receives two lists L1 and L2 and constructs
their convolution, with the list L2 reversed.
> convolute [1, 7, 5] [1, 2, 3]

(1, 3, 7, 2), 6, 1)]

Here’s a way to write a function similar to fromend, which has the advantage that it only
performs a single traversal of the list.

Preliminary Version 3



Functional Programming 2024-2025 Lab V

fromendaux :: [a] -> Int -> (a, Int)

fromendaux [x] index = (x, 0)
fromendaux (x:xs) index = let (x’, index’) = fromendaux xs index in

if index’ == index then
(x’, index’)
else

(x, index’ + 1)

fromend :: [a] -> Int -> Maybe a
fromend [] = Nothing
fromend (x:xs) index = let (x’, index’) = fromendaux (x:xs) index in
if index == index’ then
just x’
else
Nothing

Exercitiul 4.3. Write an implementation of the convolute function that works similarly (in
a single pass).

Exercitiul 4.4. Express the two functions (convolute and fromend) with the help of a fold.
The result returned by foldl can be post-processed (in O(1)).

Preliminary Version 4



