
Recursive Functions
Lab 2

Write the following functions:

1. functions over Bool: and logical, or logical, negation, nand, cloud, implication, double
implication;

and :: Bool -> Bool -> Bool

and False _ = False

and _ False = False

and _ _ = True

2. primality test: isPrime :: Integer -> Bool;

Use a helper function hasDivisors so that hasDivisors n a b tests if the natural num-
ber n has divisors between the natural numbers a and b.

3. hasDivisors :: Integer -> Integer -> Integer -> Bool

hasDivisors n a b | a > b = False

hasDivisors n a b | n ‘mod‘ a == 0 = ...

hasDivisors n a b = ...

isPrime :: Integer -> Bool

isPrime n = hasDivisors n ...

4. implement various algorithms for computing the gcd (Euclid’s algorithm by repeated
subtractions/divisions, the algorithm binary).

5. it is possible to apply an optimization for fetching recursive calls in tail position?

6. implement algorithms for computing the nth number Fibonacci.

fibo :: Integer -> Integer

fibo ... = ...

...

Implement the version that uses accumulators:

fiboaux :: Integer -> Integer -> Integer -> Integer

fiboaux 0 a _ = a

fiboaux n a b = fiboaux ... ... ...

-- a si b sunt doua numere Fibonacci consecutive

fibo’ :: Integer -> Integer

fibo’ n = fiboaux n 0 1

1



Functional Programming 2024-2025 Lab II

Implement the version that works in time O(log(n)).

7. implement the extended Euclidian algorithm.

8. implement the function succ :: Integer -> Integer.

9. recursively (even if they are inefficient) implement the following functions: • addition of
two natural numbers, using succ; • multiplication of two natural numbers, using addition;
• power, using multiplication.

10. implement the mod and div functions for natural numbers.

Preliminary version 2


