
Introduction to Haskell
Lab 1

1 Preparing the work environment.

1.1 Installation

Installation of the Haskell environment can be done by following the instructions here: https:
//www.haskell.org/ghcup/install/.

1.2 Editor

For Haskell you can use any regular text editor. It is advisable to choose a familiar text editor
that provides syntax coloring, alignment, formatting code, etc. VSCode is okay.

2 The ghci Interpreter

Along with the installation of the Haskell platform, two executables are also installed that we
will use intensively: ghc and ghci. The first executable (ghc) is a compiler for the Haskell
language, and its name is short for Glasgow Haskell Compiler. The second executable (ghci)
is an interpreter for Haskell.

To begin with, we use Haskell in interactive mode, that is, the ghci interpreter that we run
directly from the command line like this:

cmd > ghci

GHCi, version 8.6.3: http://www.haskell.org/ghc/ :? for help

Prelude>

Immediately after executing the ghci command, the current version is displayed and a
prompt starts where we can enter new commands. For example, a very useful first command
is the one that displays all the commands we can execute:
cmd > :?

Commands available from the prompt:

...

To exit ghci we will use the command:

cmd > :quit

We can sometimes, for certain commands, use the short version:

1

Functional Programming 2024-2025 Lab I

cmd > :q

Another very useful command is :!CMD where CMD is a command that can be run directly
in the terminal. For example, :!ls on a unix system will display the contents of the current
directory. On Windows, the :!dir command will have the same behavior.

As we use ghci, we will learn more such commands. Note that all these commands are
preceded by “:”.

2.1 Expression Evaluation

In ghci we can evaluate expressions in a simple way.

Exercit, iul 2.1. Evaluate in ghci the following expressions:

cmd > 2

cmd > 2 + 3

cmd > 2 + 3 * 5

cmd > (2 + 3) * 5

cmd > 3 / 5

cmd > 45345345346536 * 54425523454534333

cmd > 3 / 0

cmd > True

cmd > False

cmd > True && False

cmd > True || False

cmd > not True

cmd > 2 <= 3

cmd > not (2 <= 3)

cmd > (2 <= 3) || True

cmd > "aaa" == "aba"

cmd > "aba" == "aba"

cmd > "aaa" ++ "aba"

As can be seen in Exercise ??, the syntax of the expressions is the usual one. However, in
Haskell, the above expressions can also be written in prefixed form. For example, the expression
2 + 3 can be written as ((+) 2 3).

Exercit, iul 2.2. Evaluate all the above expressions in prefixed form. Pay attention to the
priorities of the operators!

2.2 The :t command

A very useful ghci command is :t or :type. This command allows us to find out the type of
an expression:

cmd > :t True

True :: Bool

cmd > :t not

not :: Bool -> Bool

Preliminary version 2

Functional Programming 2024-2025 Lab I

Notice that True has type Bool and not has type Bool -> Bool, i.e. it takes an argument
of type Bool and returns a result of type Bool.

Exercit, iul 2.3. Use :t to find the types of expressions: True, False, True && False, True
&& (2 <= 4) .

Exercit, iul 2.4. Use :t to find out the type of the expression: "aaa". Ask the lab teacher to
explain the type shown.

Exercit, iul 2.5. Use :t to find out the types of expressions: 2, 2 + 3, (+). Ask the lab teacher
to explain the types shown.

Exercit, iul 2.6. Evaluate in ghci the expression not 2. What do you get?

Evaluating the expression not 2 in Exercise ?? produces an error:

<interactive>:42:5: error:

• No instance for (Num Bool) arising from the literal ’2’

• In the first argument of ’not’, namely ’2’

In the expression: not 2

In an equation for ’it’: it = not 2

The error tells us that the argument type for not is not the expected one, i.e. a boolean
argument.

Exercit, iul 2.7. Use the command :t to find the type of not and then the type of the argument
2. What do you notice?

3 Functions and function calls.

3.1 Function calls.

If you solved Exercise ?? you already learned how to call functions in Haskell. The addition
operation (+) is a function. Calling this function is done like this: on the first position we put
the name of the function, and on the following positions we find the arguments separated by
spaces. So the call is ((+) 2 3).

Exercit, iul 3.1. In Haskell there are already predefined functions: succ – which calculates
the successor of a number, pred – which calculates the predecessor of a number, max – which
calculates the maximum between two numbers, min – which calculates the minimum of two
numbers. Use the :t command to find out the types of these functions. Call all these functions
in ghci and check if you get the correct output.

3.2 Defining functions.

The syntax for defining functions in Haskell is very simple and we will explain it with an ex-
ample:

id x = x

The above function is the identity function. The name of the function is id, the name of the
argument is x, and after the symbol = is the body of the function.

Preliminary version 3

Functional Programming 2024-2025 Lab I

Exercit, iul 3.2. Write the above function in ghci and call the function.

The function that calculates the sum of three numbers can be defined as follows:

sumThree x y z = x + y + z

Exercit, iul 3.3. Write the above function in ghci and call the function.

Exercit, iul 3.4. Write a function that calculates the product of three numbers and test the
function in ghci.

Because it is more difficult to edit functions on the command line, we prefer to write the
code in files. A Haskell file usually has the extension .hs.

Exercit, iul 3.5. Create a file that we’ll call functii.hs that will contain the definitions of the
id and sumThree functions (defined above).

To load this file into ghci, we will use the following command line:

cmd > ghci functions.hs

GHCi, version 8.6.3: http://www.haskell.org/ghc/ :? for help

[1 of 1] Compiling Main (functii.hs, interpreted)

Ok, one module loaded.

Main>

Alternatively, we can load the file into ghci using the :l or :load command:
cmd > ghci

GHCi, version 8.6.3: http://www.haskell.org/ghc/ :? for help

Prelude> :l functii.hs

[1 of 1] Compiling Main (functii.hs, interpreted)

Ok, one module loaded.

After any change we make to the file, it must be reloaded using the command :r or :reload:

*Main> :r

[1 of 1] Compiling Main (functii.hs, interpreted)

Ok, one module loaded.

Exercit, iul 3.6. Again call the id and sumThree functions which are now defined in the
functions.hs file.

When writing functions in Haskell, it is recommended that we also write the type of the
functions to be sure that they will only be called on the arguments that we intend to process
in that function. The Haskell language comes with a type inference mechanism. For example,
if we don’t explicitly specify the type of a function, that mechanism uses the information it has
in the body of the function to calculate the type of the function.

Exercit, iul 3.7. What type is the sumThree function? Discuss with the lab teacher how the
type of the function was inferred. Call the function over the arguments 3.2, 2 and 4.

Preliminary version 4

Functional Programming 2024-2025 Lab I

We explicitly specify the type of the sumThree function like this:

sumThree :: Int -> Int -> Int -> Int

sumThree x y z = x + y + z

Exercit, iul 3.8. What type does ghci display for the sumThree function now? Call the function
over the arguments 3.2, 2 and 4. What happened?

Next, we define a function that calculates the maximum between two numbers:

myMax :: Int -> Int -> Int

myMax x y = if x <= y then y else x

Exercit, iul 3.9. What type is the function myMax? Test the function in ghci.

Exercit, iul 3.10. Define a function that calculates the maximum of 3 integers and test the
function in ghci.

3.3 Funct, ii recursive.

As,a cum era de as,teptat, ı̂n Haskell putem defini funct, ii recursive. Funct, ia de mai jos calculează
pentru un număr dat suma numerelor naturale până la acel număr. În cazul ı̂n care argumentul
este un număr negativ, funct, ia va returna valoarea 0.

mySum :: Int -> Int

mySum x = if x <= 0 then 0 else x + mySum (x - 1)

Exercit, iul 3.11. Testat, i funct, ia mySum ı̂n ghci.

Exercit, iul 3.12. Definit, i o funct, ie recursivă care returnează elementul de pe pozit, ia dată ca
argument din s, irul lui Fibonacci.

Exercit, iul 3.13. Definit, i o funct, ie recursivă care returnează cel mai mare divizor comun a
două numere.

3.4 Recursive functions.

As expected, in Haskell we can define recursive functions. The function below calculates for a
given number the sum of the natural numbers up to that number. If the argument is a negative
number, the function will return the value 0.

mySum :: Int -> Int

mySum x = if x <= 0 then 0 else x + mySum (x - 1)

Exercit, iul 3.14. Test the mySum function in ghci.

Exercit, iul 3.15. Define a recursive function that returns the element at the given position as
argument in the Fibonacci sequence.

Exercit, iul 3.16. Define a recursive function that returns the greatest common divisor of two
numbers.

Preliminary version 5

